Lowpass Filter

C2 = 4 Q2 C1
R = 1 / ( 4π Fο Q C1 )
Enter Values: C1, Fο, and Q
Highpass Filter

R1 = 1 / ( 4π Fο Q C)
R2 = 4 Q2 R1
Enter Values: C, Fο, and Q
Bandpass Filter

R = Q / ( π Fο C )
REQ = R / ( 4 Q2 )
AV = 2 Q2
AVR = AVT / AV
RB = REQ / AVR
RA = ( RB * AVR ) / ( 1 - AVR )
Enter Values: C, Fο, Q, and AVT:
Lowpass Filter with Gain

R = 1 / ( 2π C Fο)
Ry = Rx ( AVT - 1 )
if ( AVT < 2.0 )
Q_Limit = -1 / (AVT - 2)
if ( AVT ≥ 2.0)
Q_Limit = Infinity
Select Q < Q_Limit
Compute:
m = AVT - 2 + ( 1 / Q )
Cm = C * m
Rm = R / m
Enter Values: Fο, C, AVT, Rx
Compute: Q_Limit
Lowpass Filter with Gain (Inverting)

R = 1 / ( 2π C Fο)
m = (1/Q - 1) / (1 - k)
mR = m * R
Rk = R / -k
Cm = C / m
Enter Values: k, Q, Fο, C
The High Order Filter Table (2015)


Frequency & Time Response
Butterworth

Bessel

Component Values
